
Journal of Statistical Physics, VoL 26, No. 1, 1981 

Fokker-Planck Equation Approach to Fluctuations 
about Nonequilibrium Steady States 

Hermann Grabert 1'2 

Received June 5, 1980 

We examine the properties of steady states in systems which interact at the 
boundary with a nonequilibrium environment. The examination is based on a 
nonlinear Fokker-Planck equation, the structure of which is determined by the 
fact that it also governs the time evolution of the equilibrium fluctuations of the 
system. The nonlinearities in the Fokker-Planck equation may have two origins: 
thermodynamic nonlinearities which arise if the thermodynamic potential is not 
a bilinear function of the state variables, and nonlinear mode coupling which 
arises if the transport coefficients depend on the state. While these nonlinearities 
have only a small effect on the equilibrium fluctuations of a system away from 
critical points, they are shown to be important for the determination of fluctua- 
tions about nonequilibrium steady states. In particular the state dependence of 
the transport coefficients may lead to deviations from local equilibrium and to a 
breakdown of detail balance. An explicit formula for the time correlations of 
fluctuations about the nonequilibrium steady state is obtained. The formula 
leads to long-range correlations in fluids in the presence of a temperature 
gradient. The result is compared with earlier approaches to the same problem. 
Finally, we study the linear response to external forces and obtain a generaliza- 
tion of the fluctuation-dissipation formula relating the response functions with 
the nonequilibrium correlation functions. 

KEY WORDS: Nonequilibrium steady states; Fokker-Planck equation; cor- 
relation functions; response theory; fluctuation-dissipation theorem; fluctu- 
ations in fluids; light scattering from nonequilibrium fluids. 

1. INTRODUCTION 

To study the properties of nonequilibrium systems there are two possible 
approaches: a microscopic approach by statistical mechanical methods and 
a macroscopic approach using the theory of stochastic processes. 
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The macroscopic approach is not necessarily less ambitious. Often the 
process of the macroscopic variables are approximately Markovian. For 
Markovian processes, the connection between the macroscopic process and 
the underlying statistical mechanics is well understood. The molecular 
nature of the system leads to a particular form of the macroscopic equa- 
tions of motion in terms of transport coefficients and a thermodynamic 
potential, (~'2~ and those quantities are given by certain molecular aver- 
ages. (1'3~ If this particular form of the equations of motion is correctly 
incorporated into the macroscopic approach there is generally no need for 
more detailed microscopic calculations, at least if one does not intend to go 
beyond the Markovian limit. 

In this paper we base our considerations upon a nonlinear Fokker- 
Planck equation which is of the form derived from statistical mechanics. (1~ 
The nonlinearities in the Fokker-Planck equation may have two origins: 
thermodynamic nonlinearities which arise if the thermodynamic potential is 
not a bilinear function of the macroscopic variables, and nonlinear mode 
coupling which arises if the transport coefficients are not constant but 
rather depend on the state. The nonlinear Fokker-Planck equation or the 
equivalent nonlinear Langevin equation are generally used as the basic 
starting point in the study of critical dynamics (4~ where the nonlinearities 
play a crucial role. Away from critical points the nonlinear mode coupling 
has only a small effect on the equilibrium fluctuations in three-dimensional 
systemsJ 5~ In this region Van Kampen's arguments (6~ can be used to show 
that the fluctuations are approximately Gaussian and obey a linear equa- 
tion of motion. 

The Fokker-Planck equations used in the study of fluctuations about 
equilibrium generally make reference to a particular equilibrium state. This 
is due to the fact that the thermodynamic potential and the transport 
coefficients are usually expanded in terms of variables which describe 
deviations from a particular equilibrium state. However, the basic Fokker- 
Planck equation (~ makes no reference to a particular equilibrium state. 
This is why the study of nonequilibrium systems by Fokker-Planck meth- 
ods is rather straightforward. The thermodynamic functions appearing in 
the Fokker-Planck equation are now expanded about a reference state 
which is itself a nonequilibrium state. This reference state is properly 
chosen as the nonequilibrium solution of the deterministic laws associated 
with the Fokker-Planck equation. (2) 

In this paper we restrict ourselves to nonequilibrium steady states 
which are not near critical points. This case is particularly simple since the 
fluctuations about the nonequilibrium steady state are small and they 
behave in a quasilinear manner. However, the nonlinearities show in the 
large and must be taken into account to determine the correct steady state. 
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A corresponding quasilinearization of the Fokker-Planck equation is 
shown to emerge naturally to first order of an expansion where the 
Boltzmann constant furnishes a formal expansion parameter. 

Recently, a statistical mechanical approach to nonequilibrium steady 
states has been developed by Oppenheim and his collaborators (v) with 
interesting results. It has been shown that the nonequilibrium state may not 
be a local equilibrium state and that the breakdown of time reversal 
symmetry leads to long-range correlations in hydrodynamic systems. We 
shall see that these problems can easily be investigated within the Fokker-  
Planck equation approach. 

The outline of the paper is the following: In Section 2 we consider 
nonequilibrium steady states from a macroscopic deterministic point of 
view. In particular, we investigate the linear relaxation to time-independent, 
stable nonequilibrium steady states which lie on the thermodynamic branch 
of the system. (8'9) In Section 3 we study the fluctuations about the steady 
state and show that they cannot be described by a local equilibrium 
distribution if the transport coefficients are functions of the state. Section 4 
investigates the time correlation functions of the fluctuations and gives 
conditions which must be satisfied for processes with detailed balance. 
Further, we determine the linear response to external forces and obtain a 
generalization of the fluctuation-dissipation theorem of the first kind. In 
Section 5 we present our conclusions and discuss the relation to other work. 
The Appendix illustrates the theory by outlining its application to fluids. 

2. MACROSCOPIC DETERMINISTIC DESCRIPTION OF STEADY 
STATES 

2.1. Deterministic Equations of Motion 

We consider a system described by a set a = (a l . . . . .  a i . . . .  ) of 
macroscopic variables. The index i may be continuous. In a continuum 
description the variables a are quantities like energy density, magnetization 
density, concentrations of chemical constituents. In a lattice or cell descrip- 
tion the variables a are quantities like the number of particles in a cell or 
the energy content of a cell. On a kinetic model the a's are sums of 
molecular variables. 

In a deterministic description the fluctuations of the macroscopic 
variables are neglected and irreversible processes in the system are de- 
scribed by a set of deterministic equations of motion (transport equations) 
which we write in Onsager's form 

~ i  i "  - -  i 
= L J - x j = f  (1) 
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Here and in the sequel we understand that a summation or integration is to 
be carried out for the underlined indices. The L O are the transport coeffi- 
cients which may be functions of the state a, and the Xi are the thermody- 
namic forces 

OS 
X i -  Oa i (2) 

where S(a)  is the entropy, and where O/Oa i denotes a partial or functional 
derivative. 

The equations (1) make no reference to a particular equilibrium state 
as long as the state functions L O and S are not expanded about some 
equilibrium values. If the variables are densities of conserved quantities the 
transport coefficients include derivatives with respect to spatial coordinates, 
and the deterministic equations (1) have the form of partial differential 
equations. For fluids the explicit form of these equations is given in the 
Appendix. 

In quite a few systems we can replace the entropy" by another thermo- 
dynamic potential. For instance, we may often treat the system in an 
isothermal approximation which may be enforced by a heat bath. This 
naturally means that we restrict ourselves to nonequilibrium states with 
constant temperature. In such a case the free energy F(a)  is the adequate 
potential, and S(a)  has to be replaced by - ( 1 / T ) F ( a ) ,  where T is the 
temperature. However, changes of (1) and (2) of this kind are purely 
formal. 

The deterministic equations (1) have certain time reversal symmetries. 
We choose the variables a; so that they have definite time reversal signature 
e i. Then, the time reversal transformation reads 

a i = s E i = -- 1 (3) 

The entropy is invariant under time reversal 

S ( a )  = S ( a )  (4) 

and the transport coefficients obey the reciprocal relations 

L ~ ( a )  = ~idLJi(a) (5) 

The matrix L/j is not symmetric in general. The symmetric part 

O il = l (L iJ  .-t- L ji)  (6) 

is connected with the irreversible part of the deterministic flow, while the 
antisymmetric part 

A 0 =  �89 o - L J') (7) 

is connected with the reversible part of the deterministic flow. 
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2.2. Steady States 

We shall assume that the macroscopic variables a describe local 
properties of the systems or properties of small subsystems (cells) and that 
the deterministic equations of motion (1) are at least approximately local in 
space. We now let the system interact with an environment which has the 
character of a bath. This means that the state of the environment is not 
much influenced by the system under consideration (no feedback). The 
effect of the environment on the dynamics of the system may consist of two 
parts: a long-range interaction which can be described in terms of external 
forces h i that couple to the macroscopic variables a i, and a short-range 
interaction at the boundaries of the system. On the deterministic level of 
description the latter interaction specifies the boundary conditions which 
must be added to the equations of motion in order to have a well-posed 
problem. 

For the sake of simplicity we shall assume that no external forces are 
present. The effect of external forces could be incorporated into the 
Hamiltonian of the system. Hence, constant external forces alone do not 
lead to properties of the system qualitatively different from those of closed 
systems. Some further discussion of this question will be given below. In the 
absence of external forces the environment does not change the form of the 
deterministic equations (1) in the interior of the system. All the environ- 
ment does is to specify the boundary conditions. 

These considerations mainly apply to three-dimensional systems whose 
state is described by a set of variables a large enough to display variations 
of the local properties in all dimensions. Sometimes one can neglect spatial 
variations in one direction and regard the system as two dimensional. 
Often, spatial variations have been completely disregarded, which leads to a 
zero-dimensional description in terms of global variables. In those lower- 
dimensional descriptions the effect of a nonequilibrium environment can be 
more drastic because even the short-range interactions with the environ- 
ment may change the form of the equations of motion. 

Under time-independent boundary conditions the system often settles 
down to a steady state a, where 

f i  = ~ i ~ f ( j  = 0 (8) 

Here and in the following the A indicates that a state function is taken at 
a = a. The steady state is an equilibrium state if the thermodynamic forces 
)~ vanish. A nonequilibrium steady state ~ can also be characterized by the 
nonvanishing thermodynamic forces ~ maintained by the environment. 

We assume that the steady state ~ is stable. Putting 

a i = a i + mi (9) 
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we obtain from (1), (2) and (8) to linear order in A 

= l (a ,a )  0 0 )  

where the evolution matrix M E reads 

ME Off i j  OL ij- ~ -  - -  - L _S j k - ~ ,  - -  (11) 3a k _ Oa k X j_ 

and where 

02S 0Xi 
S o - OaiOa~ j - Oa j (t2) 

Equation (10) governs the linear relaxation to the steady state 8. The 
evolution matrix (11) naturally decomposes into two parts. The first term 
on the right-hand side of (11) is of the form of the relaxation matrix in 
equilibrium systems. The second term only arises if the transport coeffi- 
cients depend on the state and it is proportional to the thermodynamic 
forces ~. We shall see that this term leads to some interesting features of 
fluctuations about nonequilibrium steady states. 

Next we examine the time reversal properties of the linear relaxation 
law (10). For a system under the influence of an environment the time 
reversal transformation consists of two parts(9): a transformation of the 
state variables 

a i--> i f"= e'a i (13) 

and a transformation of the parameters characterizing the influence of the 
environment. These parameters are the thermodynamic forces )~ main- 
tained by the environment, and the second part of the time reversal 
transformation reads 

.^ 
Xi--) 2i ~- EtXi (14) 

which implies 

= ciai (15) 

We now decompose the drift vector l ' (a ,  A) into a reversible part 

r i ( a , A )  = �89 [P(a,A) -- eTi(&A)] (16) 

and an irreversible part 

d i ( a , A )  = �89 [ l i ( a , A )  q- r  ] (17) 

Using (4), (5), (10), and (11) we find 

3A ij \ k r i (a ,A)  =- AiJ-sj_k_q - --~--ak X j ) A -  (18) 
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and 

di(a,A)=(Dij-Sjk +__ ~DiLxj)Ak-oak_ _ (19) 

We will make use of this decomposition of li(a, A) below. 
At the end of this section we briefly discuss the changes that occur in 

the presence of constant external forces h r The equations of motion (1) are 
replaced by 3 

= - .  1 h j) a' L"-(Xj_- (20) 
] 

where Tj is the local temperature at the location associated with variable a j. 
In a steady state ~ we have 

L'L*(^Xj---~-I h j _ . ) = 0 T j  (21) 

and the evolution matrix governing the linear relaxation to ~ reads 

371/~ = s OL'____~L 2L - hL (22) 
- ~a k 

We see that only that part of the thermodynamic forces which is not 
maintained by external forces but rather is a consequence of the boundary 
conditions contributes to the second term in (22). 

3. FLUCTUATIONS ABOUT STEADY STATES 

3.1. Fokker-Planck Equation 

The stochastic theory of irreversible processes includes the effects of 
fluctuations about the deterministic path. The basic quantity characterizing 
the stochastic properties of the system is the conditional probability or 
transition probabilitypt(a'la)da' that the system will reach a state a' in da' 
within time t if it starts out from the state a. Under the assumption that the 
stochastic process of the fluctuations is a continuous Markov process the 
conditional probabilitypt(a'Ia ) is the Green's function of a Fokker-Planck 
equation. (l~ The statistical mechanical theory shows that this Fokker- 
Planck equation can be reconstructed from the limiting deterministic law 

3 This form of the equations of motion can be shown to follow from statistical mechanics. 
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(1) and  that it is of the form (2)'4 

a_~__kBLiJ( a_Pt Pt Ow ) 
O--t Pt = ~a i 3a j_ w Oa j_ 

where 

w(a) c~ exp[ (1/ke)S(a) ] 

(23) 

(24) 

k B is the Bol tzmann  constant ,  w(a) is propor t ional  to the equi l ibr ium 

distr ibut ion of the system. The proport ional i ty  factor is a funct ion  of the 
globally conserved quanti t ies which characterize the part icular  equi l ibr ium 

state. One can absorb such a factor into the defini t ion of w(a) since it 
cancels in Eq. (23). A detailed discussion of this point  is given in Ref. 1.5 It  

should, however, be noted  that the entropy itself does not  depend on the 
part icular  equi l ibr ium state. 

The determinist ic equat ions of mot ion  (1) are ob ta ined  from (23) in the 

deterministic limit (2) k 8 ~ 0. 6 The explicit k B dependence  of the F o k k e r -  
Planck equat ion can be used to set up an  approximat ion  scheme, where k B 

is used as a formal expansion parameter  in order to determine f luctuat ion 
corrections to the deterministic theory. (~l) The actual  dimensionless expan- 

sion parameters  depend  on  the k ind  of nonl ineari t ies  in the specific system 
under  considerat ion but  they are typically very small in noncri t ical  sys- 
tems. 7 Throughout  this paper  it will be assumed that we are not  in the 

vicinity of a critical point.  

3.2. Steady State Fluctuations 

The probabi l i ty  dis t r ibut ion of equi l ibr ium fluctuat ions is basically 
determined by  the the rmodynamic  potent ial  S(a) and  does not  depend  on 
the t ransport  coefficients. The probabi l i ty  dis t r ibut ion of f luctuat ions in a 

4 We understand that the macroscopic variables a are sums of molecular variables on a kinetic 
model so that they provide a natural representation of the macroscopic state in the sense of 
Ref. 2. 

5 An occasional reader not familiar with this approach might find it helpful to look at the 
example in the Appendix. 

6 The limit k 8 ~ 0 has some features in common with the familiar classical limit of a quantum 
theory where a constant of Nature is formally approaching zero too. 

7 For instance, in an incompressible fluid the actual expansion parameter is k B T/Ol,2A, where 
T is the temperature, O the mass density, u the kinematic viscosity, and A the cutoff 
wavelength or the cell diameter. Even for an extremely small cutoff of 10 ft, this parameter is 
only of order 10-2-10 3 for water at room temperature. This parameter must not be 
confused with the Reynolds number, which indicates the relevance of the nonlinearities in 
the deterministic equations. The k B expansion determines corrections to the deterministic 
behavior which are due to thermal fluctuations. 
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nonequilibrium steady state will depend on S(a) and on the thermody- 
namic forces 2 maintained by the environment. However, it is natural that 
some additional dependence on the transport coefficients arises because a 
nonequilibrium steady state transports quantities like energy or momentum 
from one boundary to another. We shall see that the state dependence of 
the transport coefficients leads to such an influence of the transport 
properties upon the steady state fluctuations. 

In Section 2 we have argued that in the absence of external forces an 
environment does not change the form of the deterministic laws in the 
interior of the system. By the same token we may argue that the environ- 
ment will not affect the validity of the Fokker-Planck equation (23) in the 
interior. This is more restrictive an assumption in a stochastic description 
because we generally must take into account external noise due to the 
molecular nature of the environment. We shall assume that the distance 
between the "interior" and the boundary is large compared to the attenua- 
tion length of the macroscopic modes of the system so that we can neglect 
the effects of fluctuating boundary conditions in the interior. 

Using (6) and (24) we may rewrite the Fokker-Planck equation (23) in 
the form 

0 = a.a__(_Ki+keg_~DU_)pt (25) 
3--7 Pt Oa i Oaj_ 

where 

Ki= LiJ_ OS +k  BOLi___~ j- =f i  + knOL ij- 
Oa j- OaJ- aa j_ 

is the Fokker-Planck drift. 
It follows that 

and 

(26) 

d i 
d-t ( a ) t  = ( K ' ) t  (27) 

d d-t (aiaJ)' = (aiKJ)t + (KgaJ)t + 2ka(DV)' (28) 

where ( �9 �9 �9 ), denotes the average over the single-event probability pt(a). 
The equations (27) and (28) are valid for variables a i and aJ characterizing 
properties in the interior of the system. In a steady state the stationary 
averages ( . . . )  satisfy 

( K  i) = 0 (29) 

and 

(agK j)  + (Kia j)  + 2ke(DO ) = 0 (30) 
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To evaluate these equations we expand the Fokker-Planck drift Ki(a) 
about the deterministic steady state ~. Using (8) and (9) we have 

Ki= ~ijAJ + 1 MijkAJAk + kB Os 7 + O(A3, ksA ) (31) 
- - -  O a Z  

where M] has been defined previously, while 

, _  Oy' (32) MJ k OaJOa k 

In the deterministic limit k s ~ 0 the deviations N of the fluctuating 
state variables a ~ from their deterministic values a ~ vanish. The mean 
deviations (A ~) and the second moments ( N N )  are of order k s, while 
higher moments are at least of order k~. Using these orders of magni- 
tude (11) we obtain from (29) and (30) 

A.. 
t~I~(AY_) + 1 it~Ujk(SaJSak) + ks OL'L = O(k2B) (33) 

- - -  O a : -  

and 

~'I'~(Sa~aJ) + (SaiSak-)2QJk+_ 2kf19 ~ = O(k~) (34) 

where the 8a ~ are the fluctuations about the mean values 

8a i= a i -  (a i) (35) 

The equations (33) and (34) determine the stationary mean values 
(a  i) = ~ i  --I- (m i )  and the equal-time correlations (SalSa j)  of fluctuations 
about the mean values in leading order in k n. These equations are a 
truncated form of a systematic cumulant expansion where k B furnishes a 
formal expansion parameter. The extension to higher orders is straightfor- 
ward. However, the present approximation is generally sufficient if the 
steady state is stable and not near critical points. 

3.3. Corrections to Local Equilibrium 

To elucidate the content of the equations (33) and (34) we show that 
the nonequilibrium steady state is not a local equilibrium state if the 
Fokker-Planck equation (23) contains nonlinear mode-coupling terms. A 
local equilibrium distribution is of the form 

1 ~(a) ocexp{ -k-~B [ S(a) - Xi_aLl ) (36) 

The parameters X vanish in equilibrium. In a nonequilibrium state the X's 
are determined by the requirement that the local equilibrium mean values 

( a ' )  coincide with the true mean values (a i ) .  
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The local equilibrium distribution associated with the steady state 
under consideration is characterized by parameters X of the form 

X, = 2, + ksx, + O(k2 )  (37) 

Using the method of steepest descent we can easily calculate local equilib- 
rium averages ( .-z-w-. ) in powers of k B. In particular, we find 

--= ( 1 ~k, 33S ) + O(k~) (38) ( a ' )  = 3'  - k B S  ij- to j -  ~ 3aJ_aak_Oa f 

and 

( 8aiSa j )  = - kBS9 + O(k~)  (39) 

A . .  A 

where S v is the inverse of the matrix S,). introduced previously: 

Syk_S- = 8j (40) 

The inverse exists, because the steady state is stable by assumption. 
The K's are determined by equating the right-hand side of (38) with the 

mean value (a  i) which follows from (33) and (34). Then,/5(a) yields the 
correct mean values of the macroscopic variables. However, the local 

equilibrium correlations (3a'8a j )  of the fluctuations about the mean values 
may not coincide with the true correlations (Sa'6aJ). Putting 

( 6a i~a j )  = (8ai6a j ) + .~ij (41) 

we obtain from (34) by use of (6), (11), (39), and (40) 

3~lik ~ D+ 4zi k-~lJk = t~ ~j (42) 

where 

* (~s *k oz2J-' A)  
R'~= k. ~a--2-~ s ~ + - - s ' -  ~ ~ + o ( ~ )  

(a/; ,_~ aD_~ ) 
= - - +  ~ , + o ( k ~ )  k~ axj ~ 

(43) 

The equations (42) and (43) determine the deviations q,0 from the local 
equilibrium correlations in leading order in k s . Note, that corrections to 
local equilibrium arise only if the transport coefficients L O depend on the 
state. These nonlinearities do not show in the statics of an equilibrium 
system but they are important for the statics of nonequilibrium states. 

At the end of this section we mention some chan.ges that occur in the 
presence of external forces h i. The evolution matrix M~ has the form (22), 
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and instead of (43) one obtains 

( ~/__~i__/ 0/~j/ )( ) 
/~, j=kB _ _ +  X!-  1 OXj ~ -~_l_ h! (44) 

which shows that there are no deviations from local equilibrium if the 
nonequilibrium state is entirely maintained by external forces. 

4. TIME CORRELATION FUNCTIONS AND LINEAR RESPONSE 

4.1. Time Correlations of Fluctuations 

The evolution law of time correlation functions of variables a i and a j 
characterizing properties in the interior of the system follows from (25): 

d (ai(t)aJ(O))o = (Ki(t)aJ(O))o, for t > 0 (45) 

The average ( �9 �9 �9 )0 is defined by 

(F(t)G(O)) o = f dada' F(a')G(a)p,(a'la)po(a) (46) 

where p1(a'[a) is the conditional probability, while p0(a) is the single-event 
probability at time t o = 0. 

For the steady state under consideration we obtain from (31) and (45) 
an evolution law for the stationary correlations 

ciJ ( t) = cJi ( -  t) = ( 6ai ( t)~aJ (O)) (47) 

of fluctuations 6ai(t) = ai(t) - (a i )  about the mean values of the form 

d_ CO(t ) = 3~l,kC~_J(t) + O(k~) (48) 
dt 

for t > 0. The formal solution of (48) reads in obvious notation 

I e~l t i k "  
co(t) = ( . ) - k c ~ ( ~  for t > 0 (49) 

[(e-M')~cik(o)  for t < 0 

where the equal-time correlations C O(0) ~ (6a'6aS> are determined by (34). 
Introducing the Fourier-transformed correlations 

ciJ (o~) = e-i'~t-ciJ ( t_) (50) 

Eqs. (34) and (49) can be combined to yield 

ciJ(o~)= 2ks( - io~8~+ ~'Iik)-ll)k-t-(io~6Jt+ )VI~)-l+ O(k~) (51) 
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Note that these relations have been obtained without making use of an 
assumption about the stochastic behavior of the fluctuations in the non- 
equilibrium steady state. Although the fluctuations about the steady state 
can be treated in a linear approximation their stochastics have to conform 
to the fluctuation-dissipation theorem associated with the nonlinear process 
of fluctuations about equilibrium, even if those nonlinearities have only a 
minor effect on the equilibrium fluctuations themselves. This connection 
between the equilibrium correlations and the nonequilibrium correlations 
determines the latter in those areas which are not under the direct influence 
of the environment. 

In equilibrium the correlation functions have the symmetries 

CO(t) = e'UcJi(t) (52) 

which are a consequence of the detailed balance of the stochastic process. 
In order that detailed balance hold for the nonequilibrium steady state 
under consideration the following potential conditions (12) must be satisfied: 

Did(a) = cicJDYi(~l) (53) 

and there must be a potential ~p(a, A) with 

~k(cT,/~) = ~b(a,Z~) (54) 

so that 

and 

a4-' r-(a,a) + r-'O,a ) ~ ( a , a )  = 0 (55) 

as well as 

( ,  . abil ) D'I-S!k-+ ~a~ ~t_ C&(O) = ksDid (59) 

i A ^ " d (a,•) = k~D'Z ~(a ,a)  (56) 
a2~_J 

where the reversible drift r i and the irreversible drift d i have been defined 
previously. 

While (53) is a consequence of (5) and (6) the potential Lp does not 
exist in general. One finds that q~ only exists if 

aa / x z =  0 (57) 

and if the equal-time correlations c/J(0)--= (3ai3a j )  following from (34) 
satisfy 

c ~ (0) = ~'~JcJ' (0) (58) 
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The latter relation which relates the irreversible part of the evolution matrix 
M~ with the correlation matrix CO(O) and the diffusion matrix/) 0 reduces 
to the Einstein relation in equilibrium. However, this condition will gener- 
ally not be satisfied in a nonequilibrium steady state if the transport 
coefficients are not constant. State-dependent transport coefficients may 
lead to a breakdown of detailed balance in nonequilibrium steady states. 

In the presence of external forces h i we have to replace Xi by ~ i -  
(1/T~.)hg on the left-hand sides of (57) and (59). If the thermodynamic 
forces ;~i are entirely balanced by the external forces the steady state is in 
local equilibrium and the conditions (57)-(59) for detailed balance are 
satisfied. 

4.2. Linear Response 

The evolution matrix M~ governs the linear relaxation to the steady 
nonequilibrium state according to 

d , 5 ( a i ( t ) )  = 3)l~8(a~(t))  (60) 

where 8(ai ( t ) )  is the deviation of the mean value from the stationary 
nonequilibrium mean value. In the presence of time-dependent external 
forces hi(t ) Eq. (60) is modified to 

8(a i ( t ) )  = )~4ik6(ak-(t)) + I~ ik- ~ h~(t) (61) 
- Tk  

This equation holds up to corrections of order k B. 
The solution of (61) with initial condition/~(ai(0)) = 0 reads 

a(a ' ( t ) )  = R'J-(t - s_)hj( s) (62) 

where 
A j A . A 

RO(,Q = O('r)(eM~) kL ~- J (1 /  Tj ) (63) 

is the response tensor. Comparing with (49) we see that the response tensor 
is related to the time-correlation matrix by a "generalized fluctuation- 
dissipation theorem" of the form 

R~(,r) = c~k-('c)ckf(o) - lLt-J(1/ Tj ) (64) 

for ~- >/0. This theorem provides a physical realization of a nonequilibrium 
fluctuation-dissipation theorem and belongs basically to class (III) in 
Hanggi's classification. (13) 
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By use of (11) we obtain from (49) 

---d C?(~-) = d ' r  cik-('r)CU-(O)-l( s Ol~l-2~a ~- :~m)C"#(0) (65) 

from which we see that (64) reduces in equilibrium to the familiar form (13) 

t d C,j (~.) (66) 
RO(r = kBT d'c 

for ~-/> O. In a nonequilibrium state there is generally no simple connection 
between the response tensor and the time rate of change of the correlation 
matrix. 

5. C O N C L U S I O N S  

Starting from the nonlinear Fokker-Planck equation (23) which deter- 
mines the stochastic process of a closed Markovian system we have 
investigated the stochastic properties of the system when it is brought into 
contact with a nonequilibrium environment. We assumed that the system 
settles down to a time-dependent nonequilibrium state. This is the case if 
the nonequilibrium parameters are still below a certain threshold where the 
system may bifurcate to time-dependent states. (8) 

For this particular nonequilibrium situation we obtained expressions 
for the time correlations of fluctuations about the steady state and for the 
linear response to external forces. To derive those expressions we made the 
following assumptions: the region where those expressions hold is not 
directly influenced by the boundary of the system and, second, the fluctua- 
tions about the nonequilibrium steady state are small and obey a linear law. 
The second approximation emerged in the first order of an expansion in 
terms of k B. In particular, no Langevin assumption or an equivalent 
fluctuation hypothesis was needed. It should however be noted that our 
expression (51) for the correlation matrix coincides with an expression [Eq. 
(7) in Ref. 14] obtained by Tremblay et al. using a Langevin assumption. 
Our procedure justifies their assumption to first order in k B where the 
Langevin equations for the fluctuations about the steady state are linear. 

Higher-order terms in k B lead to a nonlinear process of the fluctua- 
tions about the steady state. These nonlinearities lead to a renormalization 
of the transport coefficients characterizing the time evolution of the correla- 
tion functions. If the frequency dependence (5,~'15) of the renormalized 
coefficients can be neglected they just replace the bare coefficients in the 
final formulas. On the other hand, our approach can also be used to 
determine the frequency dependence of the renormalized transport coeffi- 
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cients by taking into account higher orders in kB. (~t) This is particularly 
important if one wants to extend the results to states near critical points. 

Recently, several calculations (7'14'16'17) of fluctuations in nonequilib- 
rium fluids have been put forward. In particular Ronis et al. (~6) and 
Tremblay et al. (~4) determined the structure factor for light scattering from 
a fluid in the presence of a thermal gradient. A corresponding evaluation of 
our relations will be outlined in the Appendix which also serves as an 
illustration of the theory. In a certain approximation we find an expression 
for the structure factor for light scattering which coincides with the result 
obtained by Tremblay eta/ .  (|4) There is a slight difference between this 
result and the earlier statistical mechanical calculation of Ronis et al., (16~ 
which comes from the fact that the molecular expressions in Ref. 16 have 
not been evaluated carefully enough. There is no basic difference between 
the phenomenological and the statistical mechanical approach. The evolu- 
tion equations obtained in this paper are in complete agreement with the 
results of an earlier statistical mechanical examination of nonequilibrium 
systems. (18'19) The equations (34) and (48) are directly obtained from (7.7) 
and (7.9) in Ref. 19 if the latter are specialized to time-independent mean 
values. 
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APPENDIX: FLUCTUATIONS IN FLUIDS 

1. Deterministic Equations 

A simple fluid can be described on the macroscopic level by the 
densities of the conserved quantities mass, momentum, and energy. We 
denote the mass density by p(x, t), the momentum density by g~(x,  t), and 
the energy density by e(x,  t). The index a runs through 1, 2, and 3 labeling 
the space components. In a shorthand notation we may introduce a 
five-component field of macroscopic variables 

a(x ,  t) = (p(x, t), g~(x,  t), e(x ,  t)) (Al) 

with components a~(x, t), where i runs through 0, 1, 2, 3, and 4. 
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The deterministic equations of motion consist of the continuity equa- 
tion, the Navier-Stokes equations, and the energy balance equation, and 
they read (2~176 

t5 = - ~ ( A 2 )  ax ~_ 0 v ~- 

~,,~_ 3 O r % B _  O ~ a ' ' ~  ( A 3 )  
Ox2 Ox '~ p + ~ - 

~ = _  ~ (e+p)v~_+ O a,Z_~v2+ 0 ~ 0 T (A4) 
~x ~- axZ OxZ ax ~- 

where we have introduced the velocity v ~, the pressure p, the temperature 
T, the heat conductivity ~, and the dissipative part of the stress tensor o '~r 
which reads explicitly 

( 2 )OVZd'~e+B(Ov~ Ov/~) (A5) 
~ ~ - 5  n OxZ O-~+gUx ~ 

where ~ and 77 are the bulk and shear viscosities. We suppress the space and 
time dependence of quantities if no confusion arises. 

The entropy S of the fluid is a space integral over the entropy density 
s(x): 

S = s (x)  (a6) 

The functional derivatives of S with respect to the macroscopic variables 
define the thermodynamic forces 

8 s  ~ - ( 1 / 2 )  v2  

X o -  8p T (A7) 

8 s  _ v ~ ( A S )  
X ~ -  Sg" T 

6S 1 
x 4 -  6e - T (A9) 

where/~ is the chemical potential. 
Now, the deterministic equations (A2)-(A4) can be cast into the form 

(1): 

a/(x) = L i J ( x , y ) x j ( Y )  (A10) 

The transport matrix L~J(x, y )  consists of two parts: The antisymmetric 
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part 

o 1 a @ l 0 
' Ox ~ ~Xo 

- -~-- -~?-- ]  . . . .  ; - - - -~ l ; -2- - -~-- -~7 . . . .  7 - 5 7  8 ( x - y )  A i J ( x , y ) =  ~ - -  , - -  _ _ _  ~ - -  ~ - -  
ay aXo ] OX fl OXa 0)2 OX~ Oy OX4 

. . . . . . . . .  i . . . . . . . . . .  7 - - ~ - p  . . . . . . . . . . . . . . . . .  0 , 0 
] OX 'O OX4 

(All)  

where i = 0, a, 4 and j = 0, fl, 4, gives rise to the reversible motion (Euler 
equations), while the symmetric part gives rise to the dissipative motion, 
and it reads 

DiJ(x ,  y ) =  Ox Ai~ , j~_(x)_~__~6(x_  y )  (A12) 

where 

and 

fo �9 o l o 1 
J--, . . . . . . . . . .  ~, . . . . . . . . . . . . . . . . .  - - 1  

Aiu'jtt = 10 J T~- ~"'Bt' ' TE~"'Z~'vZ | (A13) 
/ - §  . . . . . . . . . .  " . . . . . . . . . . . . . . . . . . . .  / 
~0 [ T~Z~'~vZ [ TZU'XJ'vZv~-+ T2~6~J  

Z '~'~' = ~1(8'~8 ~ + 8'~t'8 B~ ) + ( t  - ~1)8  '~8~" (A14) 

The equivalence of (A10) and (A2)-(A4) follows after some of the familiar 
thermodynamic manipulations. For more details and a molecular definition 
of the various quantities introduced the reader is referred to Ref. 21. 

2. Fokker-Pianck Equation 

The Fokker-Planck equation (23) associated with the deterministic 
laws (A10) is of the form 

O 8 kRLiJ (x , z ) (  OPt Pt ~w ) (115) 
a-t Pt = 8ai(  x__) 8aJ_(.,v) w 8aJ_(.,v) 

where w is given by (24). The globally conserved quantities of a fluid in a 
container with ideal walls are the total mass 

M = p(x) (A16) 

and the total energy 

E = e (x)  (A17) 
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Any distribution of the form 

Pst = w F ( M , E ) ,  (A18) 

where F is an arbitrary function of the globally conserved quantities, is a 
stationary solution of (A 15). This is a consequence of the particular form of 
the transport matrix and the fact that 

8ps, Pst 8w 
8aJ(y) w 8aJ(y) 

is independent of y. 
A canonical equilibrium state is of the form 

[ 1 ( E - / ~ 0 M ) ]  (A19) Pc ccw exp k8 To 

where T o and/to characterize the particular equilibrium state. Using (A6) 
the distribution (A19) may be written 

( 1  [ s(x--)- 1 e(x--)+ /~~ ])  pc oc exp ~ To ~ T0O(x ) (120) 

This exponential can be substituted for w in Eq. (A15) since the terms 
which depend on T o and/L 0 cancel. 

To study equilibrium fluctuations the exponent in (A20), which is a 
function of the state variables, is usually expanded about its maximal value. 
This leads to an expansion for w of the Ginzburg-Landau type. By 
truncating this expansion the Fokker-Planck equation acquires a reference 
to a particular equilibrium state and it can only be used to study fluctua- 
tions about this equilibrium state. Such an expansion about equilibrium is 
not advisable if one wants to study nonequilibrium fluctuations; one rather 
should base the considerations upon the basic form (A15) with w given 
by (24). 

3. A Fluid in a Temperature Gradient 

We now consider a particular nonequilibrium state: two heat baths at 
different temperatures maintain a constant temperature gradient in a fluid 
layer of thickness L. This nonequilibrium steady state is a stationary 
solution of (A2)-(A4) characterized by 

~~ = o 

f i (x)  = P0 (A21) 

~(x)  = 7"o + X~xZ 

where X~ is the temperature gradient. The origin of the coordinate system 
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lies at the center of the fluid system. To keep things as simple as possible 
we disregard the temperature and pressure dependence of ~, f, and ~. 

The evolution matrix (11) governing the linear relaxation to the steady 
state is obtained by linearizing (12)-(A4) about the steady state (A21). We 
find 

~ 0 ( x ,  y) = 

0 , u 0 
I a x  # t ! ! 

. . . . . . . . .  7 - - - r  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  n . . . . . . . .  -2 . . . .  
0 [ O p ~  [ 02 1 8 , ~ B + [ ~ . +  1 ,~ ~2 1 l 0 [ a p ]  8 ( x  

. . . . . . . . . . . . .  4 . . . . . . . . . . . . . . . .  : - - 7  . . . . . . . . . .  + . . . . . . . . . .  t -  
o 2 [a/~' l  ] a e+p  ,~ a 2 [ a T ]  , 

ax-~ax- ~ g-o ~, ax~ ~; [ a~-ax-~, a ]~ 

( A 2 2 )  

where we have noted that p and T are only functions of 0 and the intrinsic 
energy density, 

= e - 1/21)2 (A23) 

Using (A12)-(A14) we obtain an expression for the symmetric part of the 
transport matrix in the steady state (A21) of the form 

f iO(x,  y )  = 

o I o l 0 
I . . . . . . . . . . . . . . . . . . .  ( ~ --I----- 
i 0 * 0 ~ 0 * 0  2 a A 0 ! 0 0 ~-~ T 8 - ~ - - - - T - - -  ~ - - ~  - - T - -  8 ( x - y )  

ax '~ ax~ [ 
! ! . 

0 I 0 l - ~  O-~-T 2 ~-~ 
t i ~ a x  ~- ~x  ~- 

( A 2 4 )  

We now have all quantities needed to determine the correlations of 
fluctuations about the steady state by means of Eq. (51). The evaluation of 
(51) is itself a complicated problem if the temperature gradient is large 
because the correlation functions are nonlinear functions of the tempera- 
ture gradient. For the illustrative purposes of this Appendix we may restrict 
ourselves to a small gradient and make the simplifying assumption that the 
pressure is only a function of the density, i.e., (O/~/ar = 0, so that the 
evolution matrix (A22) couples the density and the longitudinal momentum 
only to themselves. In this approximation the density-density correlation 
function is readily obtained from (51) if we introduce a Fourier space 
representation of the fluctuation 

1 e~k~_8a~(x) (125) a i ( k )  = - ~  
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where V is the volume. The requirement that the fluctuating variables 
describe properties in the interior of the system restricts the k vector to 
values with [klL >> 1. Using (A21)-(A25) we obtain from (51) 

Coo(k, k' ; a~) = e-i'~ t )p(k ' ,  0)) 

2kB ( 2~l(k"k") 2 + [ ; - (2/3)~l]k2k '2} 

(w 2 - c2k 2 - i,,,cok2)(w 2 -  c2k '2 + i,,lcok'2) 

X ( ro - iXz ) , (k  + k') (A26) 

where k 2 = k~-k ~-, and where 

= [ 0t3 ],/2 (127) 
o  ao], 

is the sound velocity, while 

+ (4/3)7 
~'11 - t; (A28) 

is the longitudinal diffusion constant. 
The density-density correlation function is related to the structure 

factor S(k ,  w) for light scattering by 

S ( k , w )  = ( 1 / B Z ) B ( k  - k__')B(k + k__")Coo(k',k",co) (A29) 

where B(k )  = B ( - k )  is a weighting function which depends on the band- 
width of the light source focused on a spot around x = 0, and where 
B 2= B(k_)B(-k_). Using (A26) we find after simple transformations 

S (k, co) = ~ B (k - k')2I( k', co) (A30) 

where 

2kBpt'llk4 - [ 2t~[IW3)t ~-kZ 1 
I(k,,o) = c2k22 To . . . .  (co 2 -- -t- v~w2k 4 (602 - c2k2) 2 "t- p~o)2k 4 (A31) 

Since the light source should only illuminate a small portion of the fluid in 
the interior, the bandwidth Ak has to be large compared to 1 / L ,  but it may 
still be small compared to ]k]. In this case the average over B ( k  - k') 2 can 
be neglected in Eq. (A30) and we have 

S(k ,  co) = I ( k ,  co) (A32) 

This expression for the spectrum has also been obtained by Tremblay et 
al. (14) 
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As a consequence of the temperature gradient X a the structure factor 
(A32) shows an asymmetry in the Brillouin peaks at ~0 z = c2k 2. The height 
difference of the peaks has a pronounced ( 1 / k  2) dependence which can be 
traced back to long-range static correlations between the density and the 
longitudinal momentum. (7) The static correlations can be obtained directly 
from Eq. (42). In the steady state (121) Eq. (43) yields 

R'J(x, y) = 

o o 
~x B 

( +p)r OpT a'F 0 O T 0 
ax ~ ~ -  n ~ x  B ax ~ ~ x  ~ ax B Ox ~ 

A 

+ N  r 
0 0 

ax ~ 

(A33) 

Using (A22) and (A33) we obtain from (42) for the correlation between the 
density and the longitudinal momentum gll 

X~k-"t3 1 
( o ( k )  gH(_ k)} = 2~slkl k2 + O ( k  ~ (134) 

where 

Cp - 1 )  (A35) rs = �89 + 

is the sound attenuation constant. This result has also been obtained by 
Ronis et a t  (16) If we make the simplifying assumption p = P(O), which we 
have used to calculate the structure factor, 2F s is replaced by PlI" 
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